Abstract

Chloroxylenol is a commonly used antimicrobial agent in antibacterial and disinfection products, which has been detected in various environments, such as wastewater treatment plants, rivers, seawater, and even drinking water, with concentrations ranging from ng/L to mg/L. However, the biodegradation of chloroxylenol received limited attention with only sporadic reports available so far. In this study, an efficient chloroxylenol-degrading consortium, which could degrade 20 mg/L chloroxylenol within two days, was obtained after five months of enrichment. Amplicon sequencing analysis revealed a decrease in the α-diversity (e.g., Shannon index and Inv_Simpson index) of the community during the domestication process. Microbial community dynamics were uncovered, with sequences affiliated to Achromobacter, Pseudomonas, and Rhodococcus identified as the most abundant taxonomic groups. From the consortium, five pure isolates were obtained; however, it was found that only one strain of Rhodococcus could degradechloroxylenol. Strain Rhodococcus sp. DMU2021 could degrade chloroxylenol efficiently under the conditions of temperature 30-40 °C, and neutral/alkaline conditions. Chloroxylenol was toxic to strain DMU2021 and triggered both enzymatic and non-enzymatic antioxidant systems in response. This study provides novel insights into the biodegradation process of chloroxylenol, as well as valuable bioresources for bioremediation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call