Abstract

Polymers that are compostable and manufactured from renewable resources have gained significant importance in recent years. The objective of this work was to assess the biodegradability of bloodmeal-based thermoplastics in a commercial green-waste composting situation. Materials plasticised with tri-ethylene–glycol lost about 45% of their original mass after 12 weeks composting while unplasticised samples lost 35%. Degradation appeared to have been in two phases; an initial loss of soluble, low molecular compounds in the mesophilic phase followed by degradation of high molecular compounds as the temperature exceeded about 40 °C in the thermophilic phase. It was found that as degradation proceeded materials became more soluble. In addition, plasticised and unplasticized samples contained about 60 wt% moisture after 4 weeks of composting conditioning at 50% relative humidity resulted in approximately 8–10 wt% moisture, unaffected by the extent of degradation. FTIR revealed that proteins underwent hydrolytic cleavage resulting in the formation of primary amines. A significant reduction in combustion temperature was observed, indicative of a reduction in covalent bonding, likely due to shorter chains lengths or less cross-linking.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.