Abstract

Sewage sludge residue (biosolids) was investigated for its potential as a long-term tailings cover. Biosolids may prevent oxygen diffusion into underlying sulfide tailings through microbial aerobic biodegradation of organic matter. Biosolids were investigated at laboratory-, pilot-, and field-scale using analysis of total organic matter (TOM) mass reduction and O2, CO2, CH4 concentrations to quantify the biodegradation rate. A 156-day, open microcosm experiment, in which the loss of biosolids mass over time at differing temperatures, mimicking ambient (20–22 °C), mesophilic (34 °C), and thermophilic (50 °C) conditions, indicated that TOM biodegradation was best in the mesophilic temperature range, with 14.8, 27.2, and 26.7 % mass depletion at ambient, mesophilic, and thermophilic conditions, respectively. The data was correlated to field-scale data that evaluated biodegradation rates via decreasing O2 and increasing CO2 concentrations. Field biodegradation rates were less than laboratory rates because lower mean annual temperatures (0.6–0.7 °C) diminished microbial activity. A calibrated model indicates that 20 % of a field application of biosolids will degrade within 2 years. However, the rate declines with time due to exhaustion of the most readily degradable organic fraction. If biodegradation cannot be maintained, the long-term effectiveness of biosolids as a covering material for mine tailings remains a concern.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call