Abstract

The biodegradation of PHB, PHBV, PBS, PBAT, PCL, PLA, and a PLA-PCL blend was compared under aerobic and anaerobic aqueous conditions assessing biodegradation kinetics, extent, carbon fate and particle size influence (in the range of 100–1000 µm). Under standard test conditions, PHB and PBHV were biodegraded anaerobically (83.9 ± 1.3% and 81.2 ± 1.7%, respectively) in 77 days or aerobically (83.0 ± 1.6% and 87.4 ± 7.5%) in 117 days, while PCL was only biodegraded (77.6 ± 2.4%) aerobically in 177 days. Apparent biomass growth accounted for 10 to 30.5% of the total initial carbon depending on the bioplastic and condition. Maximum aerobic and anaerobic biodegradation rates were improved up to 331 and 405%, respectively, at the lowest particle size tested (100–250 µm). This study highlights the usefulness of analysing biodegradation kinetics and carbon fate to improve both the development and testing of biodegradable materials, and waste treatments in the context of a circular bioeconomy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.