Abstract

This study focused on acclimating a microbial enrichment to biodegrade benzene, toluene, ethylbenzene and xylenes (BTEX) in a wide range of salinity. The enrichment degraded 120mg/L toluene within 5d in the presence of 2M NaCl or 150mg/L toluene within 7d in the presence of 1–1.5M NaCl. PCR–DGGE (polymerase chain reaction–denatured gradient gel electrophoresis) profiles demonstrated the dominant species in the enrichments distributed between five main phyla: Gammaproteobacteria, Sphingobacteriia, Prolixibacter, Flavobacteriia and Firmicutes. The Marinobacter, Prolixibacter, Balneola, Zunongwangia, Halobacillus were the dominant genus. PCR detection of genotypes involved in bacterial BETX degradation revealed that the degradation pathways contained all the known initial oxidative attack of BTEX by monooxygenase and dioxygenase. And the subsequent ring fission was catalysed by catechol 1,2-dioxygenase and catechol 2,3-dioxygenase. Nuclear magnetic resonance (NMR) spectroscopy profiles showed that the bacterial consortium adjusted the osmotic pressure by ectoine and hydroxyectoine as compatible solutes to acclimate the different salinity conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.