Abstract

The biodegradation of polycyclic aromatic hydrocarbons (PAHs) by marine-derived fungi was reported in this work. Marine-derived fungi (Trichoderma harzianum CBMAI 1677, Cladosporium sp. CBMAI 1237, Aspergillus sydowii CBMAI 935, Penicillium citrinum CBMAI 1186 and Mucor racemosus CBMAI 847) biodegraded anthracene (14days, 130rpm, 50mgmL−1 initial concentration in malt 2% medium). Cladosporium sp. CBMAI 1237 was the most efficient strain and biodegraded more anthracene in the presence (42% biodegradation) than in the absence (26%) of artificial seawater, suggesting that the biodegradation of PAHs may be faster in seawater than in non-saline environment. After 21days, Cladosporium sp. CBMAI 1237 biodegraded anthracene (71% biodegradation), anthrone (100%), anthraquinone (32%), acenaphthene (78%), fluorene (70%), phenanthrene (47%), fluoranthene (52%), pyrene (62%) and nitropyrene (64%). Previous undocumented metabolites were identified and, anthraquinone was a common product of different PAHs biodegradation. The marine-derived fungus Cladosporium sp. CBMAI 1237 showed potential for bioremediation of PAHs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.