Abstract

The utilization of thermophilic hydrocarbon-degrading microorganisms is a suitable strategy for improving biodegradation of petroleum hydrocarbons and PAHs, as well as enhancing oil recovery from high-temperature reservoirs. In this study, the thermophilic strain Aeribacillus pallidus SL-1 was evaluated for the biodegradation of crude oil and PAHs at 60°C. Strain SL-1 was found to preferentially degrade short-chain n-alkanes (<C17) and aromatic hydrocarbons from crude oil. The highest degradation rate of 84% was obtained with 1000mg/l naphthalene as sole carbon source. Additionally, the strain was able to degrade 80% of phenanthrene (200mg/l) and 50% of pyrene (50mg/l) within 5 days at 60°C. The SL-bioemulsifier produced by strain SL-1 was identified as a glycoprotein with stable emulsifying activity over a wide range of environmental conditions. Chemical composition studies exhibited that the SL-bioemulsifier consisted of polysaccharides (65.6%) and proteins (13.1%), among them, proteins were the major emulsifying functional substrates. Furthermore, the SL-bioemulsifier was able to enhance the solubility of PAHs. Thus, the bioemulsifier-producing strain SL-1 has great potential for applications in high-temperature bioremediation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.