Abstract

Accumulation of highly recalcitrant PP wastes has caused a serious environmental pollution. We evaluated the biodegradation of two types of additive-free PP polymers by microbial degraders from different environments. Two bacterial consortia, designated as PP1M and PP2G, were enriched from the ocean and from the guts of Tenebrio molitor larvae. Both consortia were able to utilize each of two different additive-free PP plastics with relatively low molecular weights (low molecular weight PP powder and amorphous PP pellets) as the sole carbon source for growth. After a 30-day incubation, several plastic characterization methods, including high-temperature gel permeation chromatography, scanning electron microscopy, Fourier transform infrared spectroscopy, and differential scanning calorimetry, were used to characterize the PP samples. The bio-treated PP powder was covered with tight biofilms and extracellular secretions with significantly increased hydroxyl and carbonyl groups and slightly decreased methyl groups. This suggested that degradation and oxidation had occurred. The altered molecular weights and the increased melting enthalpy and average crystallinity of the bio-treated PP samples all suggested that both consortia preferred to depolymerize and degrade the fractions with molecular weights of ≤34 kDa and the amorphous phase fractions of the two types of PP. Furthermore, low molecular weight PP powder was more susceptible to bacterial degradation compared to amorphous PP pellets. This study provides a unique example of different types of additive-free PP degradation by different culturable bacteria from the ocean and insect guts as well as a feasibility of PP waste removal in different environments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call