Abstract

ABSTRACTGrain size and intermetallic phase were two key factors affecting the biodegradation behaviour of Mg alloys. In the paper, different grain size and intermetallic phase volume fraction were obtained by introducing Al into Mg–Zn alloy via selective laser melting. Results showed that the grain size refined while the intermetallic phase volume fraction increased with Al increasing. As Al was less than 3 wt.%, the grain refinement was the major factor affecting the degradation behaviour. The finer grain would create many grain boundaries, making the alloy passivate readily and resulted in a reduced degradation rate. However, with Al further increasing, the intermetallic phase became the main factor influencing the degradation behaviour though grain size was further refined. The large intermetallic phase volume fraction caused severe galvanic corrosion, accelerating the degradation. This work may provide guidance for balancing grain size and intermetallic phase on degradation behaviour of Mg alloys.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.