Abstract

Although it has been proved that abiotic processes can transform tetracycline (TEC), little is known about how microbial processes may degrade TEC in aquatic environment. The objective of this study is to investigate the biodegradation pathway of TEC by strain Klebsiella sp. SQY5 and molecular mechanism of TEC resistance under the aerobic conditions. Effects of mycelium, intracellular, and extracellular enzyme on TEC degradation process were explored, suggesting that mycelium contributed the most of TEC degradation with a maximum efficiency of 58.64%. Biodegradation characteristic of TEC and its degradation products were studied. The results showed that nine possible biodegradation products were identified, and a potential biodegradation pathway was proposed including the removal of methyl, carbonyl, and amine groups. The functional genes of this bacterium were also determined by genomics, and analysis indicated that functional genes that could be relevant to hydrolysis, ring opening and oxidation played an important role in the process of TEC biodegradation. Results from this study can provide a theoretical basis for better estimating the fate, transportation, and degradation of antibiotics in aquatic environment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call