Abstract
Co-metabolism is a promising method to optimize the biodegradation of p-Chloroaniline (PCA). In this study, Pseudomonas sp. CA-1 could reduce 76.57 % of PCA (pH = 8, 70 mg/L), and 20 mg/L aniline as the co-substrate improved the degradation efficiency by 12.50 %. Further, the response and co-metabolism mechanism of CA-1 to PCA were elucidated. The results revealed that PCA caused deformation and damage on the surface of CA-1, and the –OH belonging to polysaccharides and proteins offered adsorption sites for the contact between CA-1 and PCA. Subsequently, PCA entered the cell through transporters and was degraded by various oxidoreductases accompanied by deamination, hydroxylation, and ring-cleavage reactions. Thus, the key metabolite 4-chlorocatechol was identified and two PCA degradation pathways were proposed. Besides, aniline further enhanced the antioxidant capacity of CA-1, stimulated the expression of catechol 2,3-dioxygenase and promoted meta-cleavage efficiency of PCA. The findings provide new insights into the treatment of PCA-aniline co-pollution.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.