Abstract

Biodegradation in marine medium of PHBV films with or without 5 % wt. of phenolic compounds (catechin, ferulic acid, and vanillin) was assessed at laboratory scale. Respirometric analyses and film disintegration kinetics were used to monitor the process over a period of 162 days. Structural changes in the films were analyzed throughout the exposure period using FESEM, DSC, Thermogravimetric analyses, XRD, and FTIR spectra. Respirometric tests showed complete biodegradation of all materials during the exposure period (the biodegradation half-time ranged between 63 and 79 days) but at different rates, depending on the phenolic compound incorporated. Ferulic acid and vanillin accelerate the PHBV biodegradation, whereas catechin delayed the process. Disintegration kinetics confirmed these results and showed that degradation occurred from the surface to the interior of the films. This was controlled by the degradation rate of the polymer amorphous phase and the formation of a biomass coating on the film surface. This is the result of the compounds generated by polymer degradation in combination with excretions from microorganisms. This coating has the potential to affect the enzyme diffusion to the polymer substrate. Moreover, the cohesion forces of the amorphous phase (reflected in its glass transition temperature) affected its degradation rate, while the slower degrading crystalline fragments were released, thus contributing to the disintegration process on the film's surface. Ferulic acid, with its hydrolytic effect, enhanced degradation, as did vanillin for its plasticizing and weakening effect in the amorphous phase of polymer matrix. In contrast, catechin with cross-linking effect hindered the progress of the material degradation, considerably slowing down the process rate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.