Abstract

Bilge water is a significant source of pollution in the marine environment and has captured widespread international attention. In this study, a sequencing batch reactor (SBR) combined with strain S2 identified as Bacillus licheniformis was employed to assess the biodegradation of Chemical Oxygen Demand (COD) from bilge water. The influencing variables such as temperature, pH level and inoculum concentration on the performance SBR system were optimized by utilizing response surface methodology (RSM). The experimental results showed that the maximum COD removal of 77.81% was reached at the optimal SBR operation conditions of temperature 35.44 °C pH 8.13, and inoculum concentration 31.47 mL. In the practical application of SBR, it was found that the decrease in hydraulic retention time (HRT) was accompanied by a decrease in COD degradation rate. The biodegradation kinetics of COD in bilge water were well fitted with the first–order equation with a higher R2 value of 0.98106. In conclusion, COD in bilge water can be efficiently biodegraded by SBR under the optimization of RSM.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.