Abstract
The specific aim of the present study was to investigate the biodegradation and biocompatibility characteristics of rosin, a natural film-forming polymer. Both in vitro as well as in vivo methods were used for assessment of the same. The in vitro degradation of rosin films was followed in pH 7.4 phosphate buffered saline at 37 degrees C and in vivo by subdermal implantation in rats for up to 90 days. Initial biocompatibility was followed on postoperative days 7, 14, 21, and 28 by histological observations of the surrounding tissues around the implanted films. Poly (DL-lactic-co-glycolic acid) (PLGA) (50:50) was used as reference material for biocompatibility. Rate and extent of degradation were followed in terms of dry film weight loss, molecular weight (MW) decline, and surface morphological changes. Although the rate of in vitro degradation was slow, rosin-free films showed complete degradation between 60 and 90 days following subdermal implantation in rats. The films degraded following different rates, in vitro and in vivo, but the mechanism followed was primarily bulk degradation. Rosin films demonstrated inflammatory reactions similar to PLGA, indicative of good biocompatibility. Good biocompatibility comparable to PLGA is demonstrated by the absence of necrosis or abscess formation in the surrounding tissues. The study provides valuable insight, which may lead to new applications of rosin in the field of drug delivery.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.