Abstract

ABSTRACT In the last few decades, Brilliant green (BG) dye is widely employed to colour the fabric materials in various industries (e.g. textile, pulp and paper, etc.). The wastewater containing BG dye emerges as a major challenge among the researchers due to its toxic, mutagenic, and carcinogenic effects on human beings and marine life. In this context, the present study is mainly focused on the biodegradation of BG dye present in wastewater. The biodegradation of BG dye was performed in an indigenously designed recirculating packed bed bioreactor (RPBBR). Modified Polypropylene-Polyurethane foam (PP-PUF), a support packing material, was immobilised with a newly isolated bacterial consortium of Enterobacter asburiae strain SG43 (BGT1) and Alcaligenes sp. SY1 (BGT2). The bioreactor was operated under various organic loading rates (OLRs) of 2.7, 1.27, 0.93, 0.71, and 0.53 kg COD/m3.d−1 with a hydraulic retention time (HRT) of 4 days. The bioreactor exhibited the maximum BG dye removal efficiency of 91%. Proton Nuclear Magnetic Resonance (1H NMR), UV-Vis spectroscopy, Gas chromatography–mass spectrometry (GC-MS), and Fourier Transform Infrared Spectroscopy (FTIR) depicted the biodegradation of BG dye. Phaseolus mungo seeds germinated in BG dye biodegraded wastewater was significantly high (83.56%) than the untreated wastewater (32.4%), which was reasonably subjected to the detoxification of treated wastewater.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.