Abstract

The biodegradation ability and initial dioxygenase genes of 21 PAH-degrading bacteria isolated from mangrove sediments were investigated. Most of the isolates belonged to the genera of Sphingomonas and Mycobacterium, and the other included Rhodococcus, Paracoccus and Pseudomonas. All the isolated Mycobacterium strains could completely degrade a mixture of polycyclic aromatic hydrocarbons (PAHs) comprising phenanthrene (Phe), fluoranthene (Fla) and pyrene (Pyr) in 14 days. On the other hand, the sphingomonads differed in the extent to which mixed PAHs were degraded from 3% to 79%. The co-culture of Sphingomonas and Mycobacterium strains enhanced the degradation and all three PAHs were completely removed in 7 days. Among the three PAHs, only Pyr was completely degraded by three Mycobacterium strains (SBSW, YOWG and SKEY), whereas Fla, and then Phe were degraded by these three and other isolates. The isolated Mycobacterium strains possessed the nidA gene encoding the initial dioxygenase required for Pyr degradation, while nahAc and phnAc were not detected in the sphingomonads.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.