Abstract

The utilization of natural biomaterials in the construction of triboelectric nanogenerators (TENG) has significant implications for the advancement of sustainable self-powered devices. Sodium alginate (SA), an eco-friendly and biodegradable triboelectric material with excellent transparency, is considered an ideal material for wearable TENGs. In this work, we report a biodegradable, transparent, and antibacterial SA-based TENG for mechanical energy harvesting and self-powered tactile sensing. The addition of glycerol, an environment-friendly additive, can enhance flexibility and adhesiveness of the SA, which resulted in well-transferred AgNWs/SA electrodes with high transparency and conductivity. The major parameters that affect the output performance of the fabricated TENG are investigated, including the frequency, thickness and area of the triboelectric layers. The output voltage, transferred charge, and peak power of the TENG could reach up to 53 V, 18 nC, and 4 μW, respectively, which is sufficient to power small electronic devices. In addition, the fabricated TENG device also shows excellent antibacterial and biodegradable capabilities. Finally, the TENG is demonstrated to be an effective self-powered tactile sensor for pressure mapping, human movement monitoring, and wearable human–machine interfacing. This work provides a new strategy to design flexible transparent TENGs with biodegradable SA and paves the way for developing next-generation self-powered transient electronics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.