Abstract

Atherosclerosis remains one of the most common causes of death in the United States and throughout the world because of the lack of early detection. Macrophage apoptosis is a major contributor to the instability of atherosclerotic lesions. Development of an apoptosis targeted high-density lipoprotein (HDL)-mimicking nanoparticle (NP) to carry contrast agents for early detection of vulnerable plaques and the initiation of preventative therapies that exploit the vascular protective effects of HDL can be attractive for atherosclerosis. Here, we report the construction of a synthetic, biodegradable HDL-NP platform for detection of vulnerable plaques by targeting the collapse of mitochondrial membrane potential that occurs during apoptosis. This HDL mimic contains a core of biodegradable poly(lactic-co-glycolic acid), cholesteryl oleate, and a phospholipid bilayer coat that is decorated with triphenylphosphonium (TPP) cations for detection of mitochondrial membrane potential collapse. The lipid layer provides the surface for adsorption of apolipoprotein (apo) A-I mimetic 4F peptide, and the core contains diagnostically active quantum dots (QDs) for optical imaging. In vitro uptake, detection of apoptosis, and cholesterol binding studies indicated promising detection ability and therapeutic potential of TPP-HDL-apoA-I-QD NPs. In vitro studies indicated the potential of these NPs in reverse cholesterol transport. In vivo biodistribution and pharmacokinetics indicated favorable tissue distribution, controlled pharmacokinetic parameters, and significant triglyceride reduction for i.v.-injected TPP-HDL-apoA-I-QD NPs in rats. These HDL NPs demonstrate excellent biocompatibility, stability, nontoxic, and nonimmunogenic properties, which prove to be promising for future translation in early plaque diagnosis and might find applications to prevent vulnerable plaque progression.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.