Abstract

Incorporating carotenoids into sodium alginate films can give them functional properties for food packaging applications. The lycopene and β-carotene were included in the biopolymer matrix at 0.1%, 0.3%, and 0.5% (g carotenoid/g polymer). There was no significant difference (p > 0.05) in film thickness (45 ± 1 μm) of sodium alginate films with carotenoids. Nevertheless, the low quantity of carotenoids was enough to promote significant variations in the tensile properties of films. The films with lycopene or β-carotene showed lower tensile strength and elongation at break than control films. The carotenoid incorporation promoted a reduction (p < 0.05) in water vapor permeability, mainly by adding 0.5%. In the same way, it improved the light transmission and thermal stability of films and did not affect the water solubility of films. The scanning electron microscopy of films showed a homogeneous surface, but the films with lycopene or β-carotene showed a more compact structure than the control film. The sodium alginate films incorporated with 0.3% lycopene or β-carotene showed a remarkable protective effect on sunflower oil against oxidation compared with traditional commercial plastic packaging under accelerated storage conditions (heat and light). Therefore, they can be considered a potential material for food packaging purposes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call