Abstract

Scaffolds serving as artificial extracellular matrixes (ECMs) play a pivotal role in the process of tissue regeneration by providing optimal cellular environments for penetration, ingrowth, and vascularization. Stacks of sheet-like scaffold can be engineered to become artificial ECMs, suggesting a great potential for achieving complex 3-D tissue regeneration to support cell survival and growth. In this study, we proposed and investigated a combined particulate leaching of magnetic sugar particles (MSPs) and salt particles for the development of a sheet-like scaffold. MSPs were fabricated by encapsulating NdFeB particles inside sugar spheres and were controlled using magnetic fields as a porogen to control pore size, pore structure and pore density while fabricating the scaffold. We studied the influence of the strength of the magnetic fields in controlling the coating thickness of the unmagnetized MSPs during the fabrication of the sheet-like scaffolds. The experimental relationship between magnetic flux density and the thickness of the MSP layer was illustrated. Furthermore, we investigated the infiltration capacity of different concentrations of poly(L-lactide-co-ɛ-caprolactone) (PLCL) as a scaffold material on MSP clusters. Following polymer casting and removal of the sugar template, spherical pores were generated inside the scaffolds. Cultivation of NIH/3T3 fibroblasts on the fabricated scaffold proves that the proposed method can be applied in the cell sheet fabrication.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call