Abstract

Linear, biodegradable, aliphatic polyurethanes with various degrees of hydrophilicity were synthesized in bulk at 50-100 degrees C. The ratios between the hydrophilic and hydrophobic segments were 0:100, 30:70, 40:60, 50:50, and 70:30, respectively. The hydrophilic segment consisted of poly(ethylene oxide) (PEO) diol (molecular weight = 600 or 2000) or the poly(ethylene-propylene-ethylene oxide) (PEO-PPO-PEO) diol Pluronic F-68 (molecular weight = 8000). The hydrophobic segment was made of poly(epsilon-caprolactone) diol (molecular weight = 530, 1250, or 2000). The chain extenders were 1,4-butane diol and 2-amino-1-butanol. The diisocyanate was aliphatic hexamethylene diisocyanate. The polymers absorbed water in an amount that increased with the increasing content of the PEO segment in the polymer chain. The total amount of absorbed water did not exceed 2% for the poly(ester urethane)s and was as high as 212% for some poly(ester ether urethane)s that behaved in water like hydrogels. The polymers were subjected to in vitro degradation at 37 +/- 0.1 degrees C in phosphate buffer solutions for up to 76 weeks. The poly(ester urethane)s showed 1-2% mass loss at 48 weeks and 1.1-3.8% mass loss at 76 weeks. The poly(ester ether urethane)s manifested 1.6-76% mass loss at 48 weeks and 1.6-96% mass loss at 76 weeks. The increasing content and molecular weight of the PEO segment enhanced the rate of mass loss. Similar relations were also observed for polyurethanes from PEO-PPO-PEO (Pluronic) diols. Materials obtained with 2-amino-1-butanol as the chain extender degraded at a slower rate than similar materials synthesized with 1,4-butane diol. All the materials already manifested a progressive decrease in the molecular weight in the first month of in vitro aging. The rate of molecular weight loss was higher for poly(ester ether urethane)s than for poly(ester urethane)s. For poly(ester ether urethane)s, the rate of molecular weight loss was higher for materials containing Pluronic than for those containing PEO segments. All polymers calcified in vitro. The susceptibility to calcification increased with material hydrophilicity. The progressive deposition of calcium salt on the film surfaces resulted in the formation of large crystal aggregates, the structure of which depended on the chemical composition of the calcified material. Needle-like aggregates, resembling brushite, formed on the hydrophobic polyurethane, and plate-like crystals formed on the highly hydrophilic material. The calcium-to-phosphorus atomic ratio of the crystals growing on the samples was dependent on the chemical composition of the material and varied from 0.94 to 1.55.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call