Abstract

Injectable biodegradable copolymer hydrogels, which exhibit temperature-responsive sol-to-gel transition, have recently drawn much attention as promising biomedical materials such as drug delivery, cell implantation, and tissue engineering. These injectable hydrogels can be implanted in the human body with minimal surgical invasion. Temperature-responsive gelling copolymers usually possess block- and/or branched architectures and amphiphilicity with a delicate hydrophobic/hydrophilic balance. Poly(ethylene glycol) (PEG) has typically been used as hydrophilic segments due to its biocompatibility and temperature-dependent dehydration nature. Aliphatic polyesters such as polylactide, poly(lactide-co-glycolide), poly(ε-caprolactone), and their modified copolymers have been used as hydrophobic segments based on their biodegradability and biocompatibility. Copolymers of PEG with other hydrophobic polymers such as polypeptides, polydepsipeptides have also been recently reported as injectable hydrogels. In this review, brief history and recent advances in injectable biodegradable polymer hydrogels are summarized especially focusing on the relationship between polymer architecture and their gelation properties. Moreover, the applications of these injectable polymer gels for biomedical use such as drug delivery and tissue engineering are also described.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call