Abstract
Biodegradable polymeric micelles containing doxorubicin in the core region were prepared from a di-block copolymer composed of doxorubicin-conjugated poly( dl-lactic-co-glycolic acid) (PLGA) and polyethyleneglycol (PEG). The di-block copolymer of PLGA–PEG was first synthesized and the primary amino group of doxorubicin was then conjugated to the terminal hydroxyl group of PLGA, which had been pre-activated using p-nitrophenyl chloroformate. The resulting polymeric micelles in aqueous solution were characterized by measurement of size, drug loading, and critical micelle concentration. The micelles containing chemically-conjugated doxorubicin exhibited a more sustained release profile than PEG–PLGA micelles containing physically-entrapped doxorubicin. The cytotoxic activity of the micelles against HepG2 cells was greater than free doxorubicin, suggesting that the micelles containing conjugated doxorubicin were more effectively taken up cellularly, by an endocytosis mechanism rather than by passive diffusion. Confocal microscopic observation and flow cytometry analysis supported the enhanced cellular uptake of the micelles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Journal of Controlled Release
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.