Abstract

Durable polymer-based first-generation sirolimus-eluting stents (SES) reduce the risks of in-stent restenosis (ISR) and revascularization compared to bare metal stents (BMS). Therefore, drug eluting stents (DES), such as those using sirolimus and paclitaxel, have increasingly become available and used for the treatment of atherosclerotic coronary artery stenosis lesions. However, the permanent polymer in these DES can cause chronic inflammation and hypersensitive reactions in the stented artery after drug release. This may lead to delayed re-endothelialization, delayed arterial healing, and late stent thrombosis. In order to overcome the shortcomings of durable polymers, new DES using biodegradable polymers have been developed. DES with biodegradable polymers have been shown to be safe and effective in clinical trials. For example, biolimus A9-eluting stents (BES, Biomatrix, Biosensors Interventional Technologies Pte Ltd., Singapore) were developed as a third-generation drug eluting stent containing a bioabsorbadable polymer (PLA, poly-L-lactic acid) with the highly lipophilic sirolimus derivative biolimus A9. The objective of the present study was to evaluate a biodegradable polymer-based sirolimus coating on a novel bare-metal stent in a porcine coronary restenosis model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.