Abstract

Polyrotaxane, a macromolecular interlocked assembly, consisting of cyclodextrin has excellent inclusion capabilities and functionalization capacity, which makes it a versatile material as a vector for gene delivery applications. A biodegradable linear aliphatic polyester axle composed of Polyethylene Glycol (PEG) and Sebacic Acid (SA) was used to fabricate the β-Cyclodextrin (β-CD) based polyrotaxane as a cationic polymeric vector and evaluated for its potential gene silencing efficiency. The water-soluble aliphatic polyester was synthesized by the solvent esterification process and characterized using viscometry, GPC, FT-IR and 1H NMR spectroscopy. The synthesized polyester was further evaluated for its biodegradability and cellular cytotoxicity. Hence, this water-soluble polyester was used for the step-wise synthesis of polyrotaxane, via threading and blocking reactions. Threading of β-CD over PEG-SA polyester axle was conducted in water, followed by end-capping of polypseudorotaxane using 2,4,6-trinitrobenzenesulfonic acid to yield polyester-based polyrotaxane. For gene delivery application, cationic polyrotaxane (PRTx+) was synthesized and evaluated for its gene loading and gene silencing efficiency. The resulting novel macromolecular assembly was found to be safe for use in biomedical applications. Further, characterization by GPC and 1H NMR techniques revealed successful formation of PE-β-CD-PRTx with a threading efficiency of 16%. Additionally, the cellular cytotoxicity assay indicated biosafety of the synthesized polyrotaxane, exploring its potential for gene delivery and other biomedical applications. Further, the biological profile of PRTx+: siRNA complexes was evaluated by measuring their zeta potential and gene silencing efficiency, which were found to be comparable to Lipofectamine 3000, the commercial transfecting agent. The combinatory effect of various factors such as biodegradability, favourable complexation ability, near zero zeta potentials, good cytotoxicity properties of poly (ethylene glycol)-sebacic acid based β-Cyclodextrin-polyrotaxane makes it a promising gene delivery vector for therapeutic applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.