Abstract

Nanocomposites obtained from the incorporation of synthesized TiO2 nanoparticles (≈10 nm average primary particle size) in different amounts, ranging from 0.5 to 5 wt.%, into a biodegradable polycaprolactone matrix are achieved via a straightforward and commercial melting processing. The resulting nanocomposites have been structurally and thermally characterized by transmission electron microscopy (TEM), wide/small angle X-ray diffraction (WAXS/SAXS, respectively) and differential scanning calorimetry (DSC). TEM evaluation provides evidence of an excellent nanometric dispersion of the oxide component in the polymeric matrix, with aggregates having an average size well below 100 nm. Presence of these TiO2 nanoparticles induces a nucleant effect during polymer crystallization. Moreover, the antimicrobial activity of nanocomposites has been tested using both UV and visible light against Gram-negative Escherichia coli bacteria and Gram-positive Staphylococcus aureus. The bactericidal behavior has been explained through the analysis of the material optical properties, with a key role played by the creation of new electronic states within the polymer-based nanocomposites.

Highlights

  • Food packaging plays a decisive role in achieving protection and preservation of all types of food, from oxidative and microbial spoilage, as well as dehydration and, extends the shelf life of the food product

  • TiO2-anatase works under UV light excitation with energy above the corresponding band gap, forming energy-rich electron-hole pairs. Such charge carriers are able to interact with microorganisms, rendering biocidal properties to the corresponding polymer-based nanocomposite films [10,11,12,13]

  • The polycaprolactone is semicrystalline and wide angle X-ray diffraction (WAXS) experiments were performed to determine the influence of TiO2 nanoparticle incorporation on the crystal lattice developed in the different nanocomposites

Read more

Summary

Introduction

Food packaging plays a decisive role in achieving protection and preservation of all types of food, from oxidative and microbial spoilage, as well as dehydration and, extends the shelf life of the food product. The most effective solutions to promote both food and environment preservation, in this type of packaging might comprise, on one hand, the replacement of such materials for other environmentally friendly packaging ones based, for instance, on biodegradable polymers, and, on the other hand, the incorporation of some antimicrobial agent that minimizes and even prevents the growth and adhesion of detrimental microorganisms. Concerning the former aspect, poly(ε-caprolactone), PCL, which is a semicrystalline linear aliphatic polyester, could be a good candidate. Such charge carriers are able to interact with microorganisms, rendering biocidal properties to the corresponding polymer-based nanocomposite films [10,11,12,13]

Objectives
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.