Abstract

This paper reports antimicrobial metallopolymers containing biodegradable polycaprolactone as the backbone with boronic acid and cobaltocenium as the side chain. While boronic acid promotes interactions with bacterial cells via boronolectin with lipopolysaccharides, cationic cobaltocenium facilitates the unique complexation with anionic β-lactam antibiotics. The synergistic interactions in these metallopolymer-antibiotic bioconjugates were evidenced by re-sensitized efficacy of penicillin-G against four different Gram-negative bacteria (E. coli, P. vulgaris, P. aeruginosa and K. pneumoniae). The degradability of the polyester backbone was validated through tests under physiological pH (7.4) and acidic pH (5.5) or under enzymatic conditions. These metallopolymers exhibited time-dependent uptake and reduction of cobalt metals in different organs of mice via in vivo absorption, distribution, metabolism, and excretion (ADME) tests.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.