Abstract

This study was focused on the development of biodegradable nano-adhesives with efficient sealing and antibiotic effects for wound healing. Biodegradable polyaspartamide (PASPAM) was grafted with several functional groups to implement diverse roles-octadecylamine (C18 ) for nano-aggregate formation, dopamine (DOPA) for adhesive function, neomycin (NEO) for inhibition of bacterial infection. Specifically, NEO was conjugated to PASPAM with a pH-sensitive glycine (GLY) linker for targeted delivery on the acidic wound site. About 60% of the drug was ramteleased at pH6.0, while about 22% was released at pH7.4, showing the faster drug release pattern of nano-adhesives in the acidic environment. The C18 /DOPA/GLY-NEO-g-PASPAM nano-adhesives showed the bacterial viability higher than 70% at pH7.4, but about 40% at pH6.0. The wound breaking strength of the polymer-treated skin was much higher than that of the bare skin. According to the in vivo wound healing test using a mouse model, C18 /DOPA/GLY-NEO-g-PASPAM nano-adhesives showed much faster healing performance than sutures. From those results, C18 /DOPA/GLY-NEO-g-PASPAM nano-adhesives are expected to be utilized as effective adhesives that promote the wound healing with inhibition of bacterial infection.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call