Abstract
Porous three-dimensional scaffolds with potential for application as cancellous bone graft substitutes were prepared from aliphatic segmented poly(ester urethane) urea using the phase-inverse technique. Proton nuclear magnetic resonance, size-exclusion chromatography, electron spectroscopy for chemical analysis, secondary ion mass spectrometry, infrared spectroscopy, scanning electron microscopy, differential scanning calorimetry, computed tomography and mechanical tests were carried out, to characterize the scaffolds’ physicochemical properties. Human osteosarcoma MG-63 cells were seeded into the scaffolds for 1, 2, 3 and 4weeks to evaluate their potential to support attachment, growth and proliferation of osteogenic cells. The scaffold–cell interaction was assessed by analysis of DNA content, total protein amount, alkaline phosphatase activity and WST-1 assay. The scaffolds supported cell attachment, growth and proliferation over the whole culture period of 4weeks (DNA, total protein amount). There was, however, a reduction in the WST-1 assay values at 4weeks, which might suggest a reduction in the rate of cell proliferation at this time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.