Abstract

Microencapsulation of pesticide is a promising technology to reduce the negative environmental impact and benefit the sustainable development. Trifluralin, commonly used as a selective pre-emergence herbicide, is vulnerably subject to loss by volatilization and decomposition by sunlight when applied to the surface of soils. In the present study, trifluralin has been encapsulated using biodegradable poly(3-hydroxybutyrate-co-4-hydroxybutyrate) (PHB) polymers as carriers to develop controlled release formulations. PHB trifluralin microcapsules were obtained using a convenient solvent evaporation method. The influences of preparation parameters on the size and its distribution of the microcapsules were discussed. The particle size decreased from 4.44 μm to 2.50 μm as the shearing speeds increased from 4000 r/min to 12,000 r/min, and the value decreased from 3.64 μm to 3.23 μm as the mass fraction of emulsifier polyvinyl alcohol increased from 0.5% to 2.0%. The loading content (LC) as well as the encapsulation efficiency (EE) of trifluralin microcapsules are multiple factors dependent. Orthogonal table L9(34) was designed and range analysis was used to suggest the optimal preparation parameters. When performed under the optimized conditions, the corresponding LC and EE were 16.50% and 90.65%, respectively. The release of trifluralin from PHB microcapsules showed slow and sustained patterns, which could be easily achieved by modifying the preparation parameters including shearing speed and concentration of emulsifier. Compared to conventional trifluralin formulation of emulsifiable concentrate, trifluralin microcapsules exhibited significantly improved photostability and herbicidal activity against target weed barnyardgrass. These results demonstrated that microencapsulation with PHB could dramaticlly improve the effective utilization rate and decrease the dosage of such agricultural chemicals.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.