Abstract

It is known that tumor antigens could induce obvious anti-tumor immune responses for efficient cancer immunotherapy when combined with checkpoint blockade. However, the amount of tumor antigens is often limited due to the suppressive tumor microenvironment (TME). Here, a new type of nanomaterial was developed to improve tumor treatment by the combined action of starving therapy/photodynamic therapy (PDT)/photothermal therapy (PTT) and checkpoint-blockade immunotherapy. In detail, the immunoadjuvant nanoagents (γ-PGA@GOx@Mn,Cu-CDs) were fabricated by integrating the gamma-glutamyl transferase (GGT) enzyme-induced cellular uptake polymer-poly (γ-glutamic acid) (γ-PGA), a glucose-metabolic reaction agent - glucose oxidase (GOx), Mn,Cu-doped carbon dots (CDs) as photosensitizer and self-supplied oxygenator nanodots. γ-PGA@GOx@Mn,Cu-CDs nanoparticles (NPs) showed long retention time at the tumor acidic microenvironment and could further target cancer cells. The NPs also displayed both photothermal and photodynamic effects under laser irradiation at 730 nm. Interestingly, the endogenous generation of hydrogen peroxide (H2O2) caused by the nanoreactors could significantly relieve tumor hypoxia and further enhance in vivo PDT. By synergistically combining the NPs-based starving-like therapy/PDT/PTT and check-point-blockade therapy, the treatment efficiency was significantly improved. More importantly, the systematic antitumor immune response would eliminate non-irradiated tumors as well, which is promising for metastasis inhibition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.