Abstract

The purpose of this work is to evaluate biodegradable drug carriers with defined size, hydrophobicity, and surface charge density for preferential lymphatic uptake and retention for sustained regional drug delivery. PLGA–PMA:PLA‐PEG (PP) nanoparticles of defined size and relative hydrophobicity were prepared by nanoprecipitation method. These were compared with PS particles of similar sizes and higher hydrophobicity. PLGA–PMA:PLGA‐COOH (PC) particles at 80:20, 50:50, and 20:80 ratios were prepared by nanoprecipitation for the charge study. Particle size and zeta potential were characterized by dynamic light scattering and laser doppler anemometry, respectively. Particles were administered in vivo to rats subcutaneously. Systemic and lymph node uptake was evaluated by marker recovery. Lymphatic uptake and node retention of PP nanoparticles was shown to be inversely related to size. Lymphatic uptake and node retention of PP particles, as compared to PS particles, was shown to be inversely related to hydrophobicity. Lastly, lymphatic uptake and node retention of PC nanoparticles were directly related to the anionic charge on the particles. In vivo lymphatic uptake and retention in a rat model indicates that the 50 nm PP particles are ideal for sustained regional delivery into the lymphatics for prevention/treatment of oligometastases. © 2009 Wiley‐Liss, Inc. and the American Pharmacists Association J Pharm Sci 99: 2018–2031, 2010

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.