Abstract

Plastics are the most popular choice for packaging materials due to their strength, flexibility, and affordability. Their non-biodegradability, however, is an environmental concern and a serious human health issue that necessitates the development of sustainable and biodegradable alternatives. Towards this end, lignocellulosic residue from biowaste stands out as a viable option due to its robust structure, biocompatibility, biodegradability, low density, and non-toxicity. Herein, the lignocellulosic fiber from banana peel was extracted by alkali and bleaching treatment, solubilized in 68% ZnCl2 solution, and crosslinked through a series of Ca2+ ion concentrations, and films prepared. Results suggest that increasing Ca2+ ions concentration significantly increases the film's tensile strength but decreases moisture content, transparency, moisture absorption, water solubility, water vapor permeability, and percentage elongation. Films have a half-life of 15.26–20.72 days and biodegrade more than 50% of their weight within 3 weeks at a soil moisture of 21%. Overall, banana peel fiber could aid in designing and developing biodegradable films and offer a sustainable solution to limit the detrimental effects of plastics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.