Abstract

To address the challenges posed by spilled oil and oily wastewater, the development of clean oil-adsorption materials is crucial. However, traditional oil-adsorption materials suffer from the issue of secondary pollution. Herein, fully biodegradable nanofibrillated poly(butylene succinate)/poly(lactic acid) (PBS/PLA) foams with outstanding selective oil-adsorption performance were successfully fabricated via an eco-friendly supercritical CO2 foaming technology. The PBS/PLA composites, featuring nanofibrils with a diameter of approximately 100 nm, were prepared through a hot-stretching method subsequent to extrusion. Substantial improvements were observed in the crystallization rate and rheological properties of the fibrillated PBS/PLA composites. Furthermore, PLA nanofibrils enhanced foamability of the composite, achieving an impressive expansion ratio of up to 38.0, resulting in an outstanding oil-absorption performance (19.2–50.4 g/g) of the F-1 %-95 foam. Additionally, 20 adsorption-desorption cycles illustrated the prepared F-1 %-95 foam displayed recyclable oil-absorption characteristics. This work provides an eco-friendly strategy for preparing fully biodegradable foams intended for application as oil-adsorption materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call