Abstract

Biodegradable hyperbranched polyglycerols (dHPGs) were synthesized through oxyanionic initiating hybrid polymerization of glycerol and glycidyl methacrylate. Due to the introduction of ester linkages into the hyperbranched polyglycerol backbone, dHPGs showed good biodegradability and low cytotoxicity. Benefiting from the existence of terminal hydroxyls and methacryloyl groups, both the anticancer drug methotrexate (MTX) and fluorescent probe Rhodamine-123 could be conjugated onto the surface of dHPGs easily. The resultant MTX-conjugated polymers (dHPG-MTXs) exhibited an amphiphilic character, resulting in the formation of micelles in an aqueous solution. The release of MTX from micelles was significantly faster at mildly acidic pH of 5.0 compared to physiological pH of 7.4. dHPG-MTX micelles could be efficiently internalized by cancer cells. MTT assay against cancer cells showed dHPG-MTXs micelles had high anticancer efficacy. On the basis of their good biodegradability and low cytotoxicity, dHPGs provide an opportunity to design excellent drug delivery systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.