Abstract
Biocompatible and bioresponsive microneedles (MNs) are emerging technology platforms for sustained drug release with a potential to be a key player in transdermal delivery of therapeutics. In this paper, an innovative biodegradable MNs patch for the sustained delivery of drugs using a polymer patch, which can adjust delivery rates based on its crosslinking degree, is reported. Gelatin methacryloyl (GelMA) is used as the base for engineering biodegradable MNs. The anticancer drug doxorubicin (DOX) is loaded into GelMA MNs using the one molding step. The GelMA MNs can efficiently penetrate the stratum corneum layer of a mouse cadaver skin. Mechanical properties and drug release behavior of the GelMA MNs can be adjusted by tuning the degree of crosslinking. The efficacy of the DOX released from the GelMA MNs is tested and the anticancer efficacy of the released drugs against melanoma cell line A375 is demonstrated. Since GelMA is a versatile material in engineering tissue scaffolds, it is expected that the GelMA MNs can be used as a platform for the delivery of various therapeutics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.