Abstract

In this study, barley sprout powder/pectin (BS/Pec) composite film was prepared. Quercetin (Qu) and vanadium oxide (V2O5) nanoparticles were used to improve the physicochemical and structural characteristics of the film. The structural, physicochemical and thermal properties of the films were investigated by various techniques such as TGA, SEM, XRD, FTIR, texture analysis, etc. The thickness and tensile strength of the films increased from 120 μm to 2.4 MPa to 220 μm and 6 MPa respectively with the increase of V2O5 nanoparticles and quercetin pigment. Nanoparticles of V2O5 and quercetin decreased the moisture content of the film from 50% to 20%. Quercetin had little effect in reducing water vapor permeability (WVP), but V2O5 nanoparticles had a significant effect in reducing WVP. The pure BS/Pec film had almost 30% antioxidant properties, which increased to 81% with the increase of quercetin. Adding quercetin and V2O5 nanoparticles to the film increased the antimicrobial properties of the film against both Escherichia coli and Staphylococcus aureus bacteria. The SEM images showed the inhomogeneous surface of the BS/Pec film caused by BS powder fibers. The interactions between the components of the films (electrostatic type) was confirmed by FTIR results. The degradation temperature of the overall structure of the film in the presence of nanoparticles indicated the positive effect of nanoparticles in increasing the thermal resistance of the film. Investigating the crystal structure of the film showed that the BS/Pec film has an amorphous/crystalline or semi-crystalline structure. Considering that the prepared film has good mechanical properties and as well as antioxidant/antimicrobial properties, this film as an active composite can be used in food products packaging.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call