Abstract

Nowadays, biodegradable amphiphilic block copolymers with stable performance and adjustable structure have attracted the interests of researchers in the field of drug delivery. In this work, the triblock copolymer, P(SBMD-co-PDO)-b-PEG-b-P(SBMD-co-PDO), was successfully synthesized by ring-opening polymerization of 3(S)-sec-butyl-morpholine-2,5-dione (SBMD) and p-dioxanone (PDO) with poly(ethylene glycol) (PEG) as the initiator. In phosphate buffered solution (PBS), these copolymers could self-assemble into nano-sized micelles that have a hydrophobic P(SBMD-co-PDO) core surrounded by a hydrophilic PEG shell. Because of the strong hydrogen bonding and hydrophobic interactions, doxorubicin (DOX) was loaded into the micelles with high loading capacity (LC, up to 28.4%) and encapsulation efficiency (EE, up to 62.5%). The drug-loaded micelles showed sustained-release of DOX along with the hydrolytic degradation of the micelles in PBS. Therefore, these amphiphilic triblock copolymers have potential as drug matrix for controlled release.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.