Abstract

In recent decades, tissue engineering strategies have been proposed for the treatment of musculoskeletal diseases and bone fractures to overcome the limitations of the traditional surgical approaches based on allografts and autografts. In this work we report the development of a composite porous poly(dl-lactide-co-glycolide) scaffold suitable for bone regeneration. Scaffolds were produced by thermal sintering of porous microparticles. Next, in order to improve cell adhesion to the scaffold and subsequent proliferation, the scaffolds were coated with the osteoconductive biopolymers chitosan and sodium alginate, in a process that exploited electrostatic interactions between the positively charged biopolymers and the negatively charged PLGA scaffold. The resulting scaffolds were characterized in terms of porosity, degradation rate, mechanical properties, biocompatibility and suitability for bone regeneration. They were found to have an overall porosity of ∼85% and a degradation half time of ∼2 weeks, considered suitable to support de novo bone matrix deposition from mesenchymal stem cells. Histology confirmed the ability of the scaffold to sustain adipose-derived mesenchymal stem cell adhesion, infiltration, proliferation and osteo-differentiation. Histological staining of calcium and microanalysis confirmed the presence of calcium phosphate in the scaffold sections.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.