Abstract

Acute myocardial infarction (AMI) is the main cause of death worldwide, and the time of diagnosis is decisive for the effectiveness of the treatment of patients with AMI. Creatine kinase-myocardial band (CK-MB) has a predominance and high affinity with myocardial tissue, making it considered one of the main biomarkers for the diagnosis of AMI. In this work, we report a novel biodegradable composite material based on a polymer blend of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and Poly(butylene adipate-co-terephthalate) (PHBV:Ecoflex) and graphite microparticles for sensitive and selective electrochemical detection of CK-MB. The morphological and physicochemical characterizations of the thermoplastic composite material revealed a homogeneous and synergistic distribution of the graphite microparticles through the blend structure, providing low defects and high electrical conductivity with high electron transfer kinetics (k0 = 3.54 × 10-3 cm s-1) features with adequate flexibility for point-of-care applications. The portable and disposable devices were applied to detect CK-MB using the electrochemical impedance spectroscopy (EIS) technique in a relevant clinical concentration ranging from 5.0 ng mL-1 to 100.0 ng mL-1 and presented a limit of detection of 0.26 ng mL-1 CK-MB. The selectivity of the sensor was confirmed by testing the potential interference of major biomolecules found in biofluids and other relevant macromolecules. The accuracy and robustness were assessed by addition and recovery protocol in urine and saliva samples without sample pretreatment and demonstrated the potential of our method for rapid and decentralized tests of AMI. In addition, the study of the thermal, biological, and photodegradation of the devices after being used was also carried out, aiming at the disposal of the material more sustainably.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.