Abstract

The goal of this study was to develop a new type of core-shell micelles based on biocompatible and biodegradable amphiphilic copolymers, named PCL-CS, using chondroitin sulfate (CS) as a hydrophilic segment and poly(epsilon-caprolactone) (PCL) as a hydrophobic segment. The copolymers, prepared from the various compositions between CS and PCL, were characterized by Fourier transform infrared spectrometer, proton nuclear magnetic resonance spectrometer, and differential scanning calorimeter. The PCL-CS copolymers could be assembled into micelles using a simple emulsion. With the fluorescent probe technique, the critical micelle concentrations were obtained in the range of 1.26 x 10(-3)-8.86 x 10(-3) mg/mL. The spherical images of micelles were visualized in the presence of polyvinyl alcohol (PVA) with the use of the transmission electron microscope. The particle sizes of micelles were all smaller than 300 nm, neither aggregate nor change in hydrodynamic sizes after 15 days staying in solutions containing salts or PVA by dynamic light scattering. The intracellular uptake of KB cells incubated with PCL-CS micelles was evidenced by confocal laser scanning microscope upon loading fluorescein isothiocyanate labeled bovine serum albumin as a probe.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.