Abstract

AbstractA biodegradable aliphatic thermoplastic polyurethane based on L‐lysine diisocyanate and 1,4‐butanediol hard block segments, and 2000 g/mol poly(ε‐caprolactone) diol soft block segments was synthesized. The resulting polymer was a tough thermoplastic with ultimate tensile strength of 33 MPa and elongation of 1000%. The polymer displayed classic segmented thermoplastic elastomer morphology with distinct hard block and soft block phases. Thermal and dynamic mechanical analyses determined that the material has a useful service temperature range of around −40 °C to +40 °C, making it an excellent candidate for low‐temperature elastomer and film applications, and potentially as a material for use in temporary orthopedic implant devices. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2990–3000, 2006

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.