Abstract

Novel biodegradable β-tricalcium phosphate (β-TCP) cements with anti-washout properties were created on the basis of chelate-setting mechanism of inositol phosphate (IP6) using β-TCP powders. The β-TCP powders were ball-milled using ZrO₂ beads for 0-6 h in the IP6 solutions with concentrations from 0 to 10,000 ppm. The chelate-setting β-TCP cement with anti-washout property was successfully fabricated by mixing the β-TCP powder ball-milled in 3,000 ppm IP6 solution for 3 h and 2.5 mass% Na₂HPO₄ solution, and compressive strength of the cement was 13.4 ± 0.8 MPa. An in vivo study revealed that the above cement was directly in contact with host and newly formed bones without fibrous tissue layers, and was resorbed by osteoclast-like cells on the surface of the cement. The chelate-setting β-TCP cement with anti-washout property is promising for application as a novel injectable artificial bone with both biodegradability and osteoconductivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call