Abstract

The presence of highly urbanized and polluted areas affects both the quantity and the composition of organic matter in rivers through effluent loads and urban runoff discharges in watersheds. In such context, this paper aims to evaluate the biodegradability of anthropogenic organic matter in polluted rivers. Stream water samples were collected in three different sites considering a non-impacted area, a highly urbanized site located after a sewage treatment plant, and a site downstream of the watershed. For the biodegradation experiment, two adaptations of biodegradable dissolved organic carbon (BDOC) essay were evaluated to assess the decomposition rates between 10days, with added nutrients, in the dark at 20°C. The organic matter biodegradation was monitored by distinct parameters such as dissolved organic carbon (DOC), total organic carbon (TOC), particulate organic carbon (POC), fluorescence excitation-emission matrix (EEM), and UV absorbance measurements. The measured BDOC ranged from 0.8mg/L at site IG01 (low anthropogenic occupation) to 4.2mg/L at site IG02 (high impacted area), with averaged percentage of initial DOC ranging from 20 to 56%, while an average of 28% up to 95% of POC can be considered as biodegradable. This pattern of biodegradation of fluorescent components was also observed through a decrease of tryptophan-like and tyrosine-like fluorescence peak intensity during the incubation time. The results also showed a higher decrease of humic-like fluorescence peak intensity at polluted sites (IG02 and IG05). Our experimental approach and monitoring strategy suggests that the evaluation of the organic matter biodegradability is essential to understand the fate and transformation mechanism of organic matter in urbanized and polluted rivers. And, considering a water quality planning and management perspective, this approach is important to identify the presence and location of organic compounds potentially important for dissolved oxygen depletion in stream waters.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call