Abstract

AbstractThe environmental properties of three glycoside surfactants and one alcohol ethoxylate were examined by standardized laboratory methods. All of the surfactants biodegraded extensively in aerobic screening tests and may be assumed to approach 100% removal in aerobic wastewater treatment plants, except in cases of high loadings or otherwise exceptional conditions. Anaerobic biodegradability tests showed that an ethyl glycoside monoester (EGE) and a linear alkyl polyglycoside (APG) were both mineralized (>70%) under methanogenic conditions. In contrast, a branched APG resisted anaerobic degradation, while the alcohol ethoxylate was partially mineralized by anaerobic bacteria. The EGE surfactant was most rapidly mineralized in aerobic and anaerobic biodegradability tests. None of the surfactants inhibited respiration in activated sludge at the highest concentration tested (200 mg/L). Tests with aquatic organisms showed increasing toxicity in the following order: branched APG<EGE<linear APG<alcohol ethoxylate. Negligible aquatic toxicity was observed for the branched APG, while the alcohol ethoxylate was highly toxic to examined organisms. This evaluation demonstrates that considerable variation in biodegradability and toxicity responses can be seen within structurally related glucose‐based surfactants.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call