Abstract

In this report a textile azo dye Remazol orange was degraded and detoxified by bacterium Pseudomonas aeruginosa BCH in plain distilled water. This bacterial decolorization performance was found to be pH and temperature dependent with maximum decolorization observed at pH8 and temperature 30°C. Bacterium tolerated higher dye concentrations up to 400mg l(-1). Effect of initial cell mass showed that higher cell mass concentration can accelerate decolorization process with maximum of 92% decolorization observed at 2.5g l(-1) cell mass within 6.5h. Effect of various metal ions showed Mn has inducing effect whereas Zn strongly inhibited the decolorization process at 5mM concentration. Analysis of biodegradation products carried out with UV-vis spectroscopy, HPTLC and FTIR confirmed the decolorization and degradation of Remazol orange. Possible route for the degradation of dye was proposed based on GC-MS analysis. During toxicological scrutiny in Allium cepa root cells, induction in the activities of superoxide dismutase (SOD), guaiacol peroxidase (GPX) and inhibition of catalase (CAT) along with raised levels of lipid peroxidation and protein oxidation in dye treated samples were detected which conclusively indicated the generation of oxidative stress. Less toxic nature of the dye degraded products was observed after bacterial treatment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call