Abstract

Cold atmospheric plasma (CAP) treatment of biological surfaces results in important changes of biological functions, but little knowledge on specific surface‐chemical changes is available. We measured surface‐bound NO3 on polymer and biomolecular films after CAP treatment. An O2/N2‐based surface microdischarge was used to deactivate lipopolysaccharide (LPS), an immune‐stimulating biomolecule found in Gram negative bacteria. The observed LPS biodeactivation was highest for low N2 concentrations in O2, increased roughly linearly with surface NO3, and then saturated. NO3 was also observed after treatment by a very different source: an atmospheric pressure plasma jet operating with an Ar carrier gas. Thus, NO3 formation is a generic surface chemical modification of these materials by CAP sources.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.