Abstract

The Great Wall of China, one of the most emblematic and historical structures built by humankind throughout all of history, is suffering from rain and wind erosion and is largely colonized by biocrusts. However, how biocrusts influence the conservation and longevity of this structure is virtually unknown. Here, we conducted an extensive biocrust survey across the Great Wall and found that biocrusts cover 67% of the studied sections. Biocrusts enhance the mechanical stability and reduce the erodibility of the Great Wall. Compared with bare rammed earth, the biocrust-covered sections exhibited reduced porosity, water-holding capacity, erodibility, and salinity by 2 to 48%, while increasing compressive strength, penetration resistance, shear strength, and aggregate stability by 37 to 321%. We further found that the protective function of biocrusts mainly depended on biocrust features, climatic conditions, and structure types. Our work highlights the fundamental importance of biocrusts as a nature-based intervention to the conservation of the Great Wall, protecting this monumental heritage from erosion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.