Abstract

The functional activities of gold nanoparticles (AuNPs) on biological systems depend on their physical-chemical properties and their surface functionalizations. Within a biological environment and depending on their surface characteristics, NPs can adsorb biomolecules (mostly proteins) present in the microenvironment, thereby forming a dynamic biomolecular corona on the surface. The presence of this biocorona changes the physical-chemical and functional properties of the NPs and how it interacts with cells. Here, we show that primary human epidermal keratinocytes (HEK) exposed in culture to branched polyethyleneimine (BPEI)-AuNPs, but not to lipoic acid (LA)-AuNPs, show potent particle uptake, decreased cell viability and enhanced production of inflammatory factors, while the presence of a human plasma-derived biocorona decreased NPs uptake and rescued cells from BPEI-AuNP-induced cell death. The mechanistic study revealed that the intracellular oxidative level greatly increased after the BPEI-AuNPs treatment, and the transcriptomic analysis showed that the dominant modulated pathways were related to oxidative stress and an antioxidant response. The stress level measured by flow cytometry also showed a significant decrease in the presence of a biocorona. Further anaylsis discovered that nuclear factor erythroid-2 related factor (Nrf2), a major regulator of anti-oxidant and anti-inflammatory genes, as the key factor related to the AuNPs induced oxidative stress and inflammation. This study provides futher understanding into the mechanisms on how NPs-induced cellular stress and reveals the protective effects of a biocorona on inflammatory responses in HEK at the molecular level, which provides important insights into the biological responses of AuNPs and their biocorona.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.