Abstract

Chitin, the second most abundant biomolecule after cellulose in nature, is a significant aquaculture by-product, and is estimated at 6-8 million tons annually. Chitin is composed of monomeric N-acetylglucosamine (NAG) which can be seen as an alternative feedstock for biotechnology. Microbial functional lipids have gained attention due to their bioactivity and sustainable production. In this study, a new oleaginous yeast strain named Sakaguchia sp. HKC2 was found to be able to use NAG as the carbon source for growth and accumulate functional lipids such as PUFAs and carotenoids. When cultured on the NAG-containing medium, strain HKC2 exhibited slower growth and slower intracellular lipid accumulation compared to those on a glucose-containing medium. However, the lipids obtained from HKC2 grown on NAG medium were richer in PUFAs. Notably, torularhodin-a powerful bioactive carotenoid-was found in all HKC2 cultures on NAG, while torulene was abundant in glucose medium. These findings highlight a novel avenue for utilizing aquatic by-products and unlocking their potential.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call